Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Tetraaqua(3,4,7,8-tetramethyl-1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)zinc(II) thiosulfate

M. Enriqueta Díaz de Vivar, ${ }^{\text {a,b }}$ Sergio Baggio, ${ }^{\text {a,b }}$ Andrés Ibañez ${ }^{\text {c }}$ and Ricardo Baggio ${ }^{\text {d* }}$
${ }^{\text {a }}$ Universidad Nacional de la Patagonia, Sede Puerto Madryn, 9120 Puerto Madryn, Chubut, Argentina, ${ }^{\mathbf{b}}$ CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina,
${ }^{\text {c }}$ CIMAT, Casilla 487-3, Santiago de Chile, Chile, and ${ }^{\text {d }}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: baggio@cnea.gov.ar

Received 20 July 2004
Accepted 23 July 2004
Online 21 August 2004
In the title complex of zinc(II) with 3,4,7,8-tetramethyl-1,10phenanthroline (tmph), viz. $\left[\mathrm{Zn}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$, the metal atom has a monomeric octahedral $\mathrm{ZnN}_{2} \mathrm{O}_{4}$ complex environment comprising two N -atom donors from the tmph group and four aqua O -atom donors. The complex cation is connected to four thiosulfate anions through a compact hydrogen-bonding network involving all coordinated aqua H -atom donors and all the outer acceptors (O and S) of the anion.

Comment

The thiosulfate anion, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, is a highly versatile ligand, and metal complexes in which it does not bind to the cation are not common. A search of the April 2004 version of the Cambridge Structural Database (CSD; Allen, 2002) shows that the group acts as a counter-ion in fewer than 20% of the reported structures containing thiosulfate; in the remaining cases, it coordinates in a variety of different binding modes [for a brief review on the subject, see Freire, Baggio, Suescun \& Baggio (2000), and references therein]. This behavior contrasts with those of some closely related oxyanions, e.g. sulfate, where the ratio rises to $\mathrm{ca} 50 \%$.

When the anion does not coordinate, it tends to be involved in non-bonding interactions that are unusual either by virtue of their nature, as in $\left[\mathrm{Ni}(\text { bpy })_{3}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right) \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (bpy is $2,2^{\prime}$-bipyridine; Freire, Baggio, Mombrú \& Baggio, 2000), where two neighboring thiosulfates approach linearly head-to-head via a strikingly short S \cdots S contact of $3.25 \AA$, or because of their quantity, as in the organic clathrate $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~N}_{8}{ }^{6+} \cdot \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.$4 \mathrm{ClO}_{4}{ }^{-} \cdot 11 \mathrm{H}_{2} \mathrm{O}$ (Maubert et al., 2001), in which the anion in involved in 12 strong hydrogen-bonding interactions.

We present here the structure of the monomeric zinc(II) complex with thiosulfate and $3,4,7,8$-tetramethyl-1,10-phenanthroline (tmph), viz. $\left[\mathrm{Zn}(\mathrm{tmph})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$, (I), one of
the infrequent cases in which the anion does not bind to the cationic unit directly but is multiply connected through a dense network of hydrogen bonds.

(I)

The structure is shown in Fig. 1. The $\mathrm{N}_{2} \mathrm{O}_{4}$ environment about the Zn atom is achieved through two N -atom donors of the tmph ligand [which imposes the only distortion to the coordination polyhedron through its small bite angle, $\left.77.6(2)^{\circ}\right]$ and four water donor molecules. The result is a slightly distorted octahedral coordination with a narrow range of metal-N,O bond lengths [2.084 (5)-2.138 (6) Å; Table 1].

Analogous monomeric complexes with unsubstituted 1,10phenanthroline instead of tmph molecules have been reported previously in the form of $\left[\mathrm{Zn}(\text { phen })\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-}$, the counterion(s) being either $\mathrm{SO}_{4}{ }^{2-}$ (Zhang et al., 1999) or $2 \mathrm{NO}_{3}{ }^{-}$ (Zhang \& Janiak, 2001). No major differences are observed between these complexes and the present structure; a leastsquares fit yielded mean deviations of 0.15 (1) and 0.12 (1) \AA, respectively, for the 19 atoms that they have in common.

The tmph group is essentially planar [the mean deviation from the plane is 0.02 (1) \AA] and binds to the cation with a small, though detectable, tilt [the angle between the $\mathrm{N} 1 / \mathrm{Zn} / \mathrm{N} 2$ and tmph planes is $\left.6.4(1)^{\circ}\right]$.

Figure 1
A molecular diagram and the atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

As expected, the thiosulfate anion has an undistorted structure, with three $\mathrm{S}-\mathrm{O}$ bond lengths that are indis-

Figure 2
A packing diagram showing the hydrogen-bonding interactions leading to the formation of extended two-dimensional structures. H atoms attached to C atoms have been omitted for clarity.

Figure 3
A schematic view of the two-dimensional structures interacting with one another through the overlap of interleaved dmph groups (in order to clarify the figure, two of these groups have been highlighted).
tinguishable within experimental error. A slight departure from the ideal arrangement is observed for the $\mathrm{S}-\mathrm{S}-\mathrm{O}$ angles, presumably arising from asymmetries in non-bonding contacts.

The packing of the structure is governed by the hydrogenbonding interactions involving, as donors, all eight water H atoms and, as acceptors, the outer atoms of the thiosulfate anion (one S and three O), all of them fulfilling the role of double acceptors. This 'one-to-one' correspondence results in an approximately square geometry (in projection) of the hydrogen-bonding network around the thiosulfate anion (Fig. 2), and leads in turn to a two-dimensional structure perpendicular to the c axis in which each complex interacts with four counter-ions and vice versa (Table 2). The twodimensional frameworks thus defined are concentrated in narrow regions at $z \simeq 0.25$ and $z \simeq 0.75$, with the bulky dmph groups protruding outwards from opposite 'faces' of the twodimensional arrays, those on one side being at 90° to those on the other (Fig. 3). Neighboring planes are related by inversion centers promoting the interleaving of parallel aromatic groups at graphitic distances from each other. These $\pi-\pi$ interacting groups are separated by 3.48 (1) \AA, with overlapping rings slipped by $18.3(1)^{\circ}$ [where the slippage angle is that subtended by the ring normal and the center-to-center line (Janiak, 2000)].

Experimental

The title compound was obtained by allowing a 96% ethanol solution of $3,4,7,8$-tetramethyl-1,10-phenanthroline to diffuse into an equimolar aqueous solution containing zinc acetate and sodium thiosulfate (5 ml of each solution, all concentrations being 0.025 M). After $c a$ six weeks of slow evaporation, a few (colorless) prismatic crystals suitable for X-ray analysis were obtained.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$

$M_{r}=485.86$

Monoclinic, $P 2_{1} / n$
$a=9.894$ (2) A
$b=9.887$ (2) \AA
$c=20.016$ (4) \AA
$\beta=90.909(4)^{\circ}$
$V=1957.9(7) \AA^{3}$
$Z=4$
$D_{x}=1.648 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 112
reflections
$\theta=2.3-21.1^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Prism, colorless
$0.28 \times 0.16 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
[SADABS (Sheldrick, 1996) in
SAINT-NT (Bruker, 2000)]
$T_{\text {min }}=0.75, T_{\max }=0.83$
15814 measured reflections

Refinement

Refinement on F^{2}	H atoms treated by a mixture of
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$	independent and constrained
$w R\left(F^{2}\right)=0.141$	refinement
$S=0.81$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0446 P)^{2}\right]$
4386 reflections	where $P=\left(F_{o}^{2}+2 F_{o}^{2}\right) / 3$
277 parameters	$(\Delta / \sigma)_{\max }=0.012$
	$\Delta \rho_{\max }=0.89 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.52 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{O} 2 W$	$2.084(5)$	$\mathrm{Zn}-\mathrm{N} 1$	$2.138(6)$
$\mathrm{Zn}-\mathrm{O} 4 W$	$2.097(5)$	$\mathrm{S} 1-\mathrm{S} 2$	$1.989(3)$
$\mathrm{Zn}-\mathrm{O} 3 W$	$2.097(5)$	$\mathrm{S} 2-\mathrm{O} 1$	$1.475(5)$
$\mathrm{Zn}-\mathrm{O} 1 W$	$2.108(5)$	$\mathrm{S} 2-\mathrm{O} 3$	$1.482(5)$
$\mathrm{Zn}-\mathrm{N} 2$	$2.124(6)$	$\mathrm{S} 2-\mathrm{O} 2$	$1.482(5)$
			$106.2(3)$
$\mathrm{O} 1-\mathrm{S} 2-\mathrm{O} 3$	$111.2(3)$	$\mathrm{O} 1-\mathrm{S} 2-\mathrm{S} 1$	$110.8(2)$
$\mathrm{O} 1-\mathrm{S} 2-\mathrm{O} 2$	$109.4(3)$	$\mathrm{O} 3-\mathrm{S} 2-\mathrm{S} 1$	$110.4(2)$
$\mathrm{O} 3-\mathrm{S} 2-\mathrm{O} 2$	$108.7(3)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{S} 1$	

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 3$	0.82 (2)	2.048 (17)	2.785 (7)	150 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.82 (4)	2.439 (19)	3.219 (6)	160 (5)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 1^{\text {ii }}$	0.81 (4)	2.07 (4)	2.716 (8)	136 (6)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 2^{\text {iii }}$	0.813 (16)	1.969 (14)	2.714 (7)	153 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.820 (16)	2.036 (16)	2.818 (7)	159 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{~S} 1^{\text {iii }}$	0.82 (2)	2.499 (12)	3.275 (5)	158 (3)
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} 1$	0.813 (13)	1.964 (16)	2.760 (6)	166 (6)
$\mathrm{O} 4 W-\mathrm{H} 4 W B \cdots \mathrm{O}^{2 i}$	0.82 (3)	2.05 (3)	2.811 (7)	156 (5)

Symmetry codes: (i) $\frac{3}{2}-x, y+\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, y+\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, y+1, z$.
H atoms on C atoms which were unambiguously defined by the stereochemistry were placed at calculated positions ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and allowed to ride. In addition, terminal dmph methyl groups (C$\mathrm{H}=0.96 \AA$) were allowed to rotate, although their low rotational energy barrier may make the positions less well defined. Water H atoms were located from difference Fourier syntheses and refined with restrained $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances of 0.82 (1) and 1.36 (2) \AA, respectively. All $U_{\mathrm{iso}}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atoms.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Spanish Research Council (CSIC) for providing a free-of-charge license to the CSD system and CIMAT for the purchase of the CCD detector.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1648). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2000). SAINT-NT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Freire, E., Baggio, S., Mombrú, A. \& Baggio, R. (2000). Acta Cryst. C56, 541543.

Freire, E., Baggio, S., Suescun, L. \& Baggio, R. (2000). Aust. J. Chem. 53, 785790.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3898.
Maubert, B. M., Nelson, J., McKee, V., Town, R. M. \& Pal, I. (2001). J. Chem. Soc. Dalton Trans. pp. 1395-1397.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, C. \& Janiak, C. (2001). J. Chem. Crystallogr. 31, 29-36.
Zhang, C., Yu, K., Wu, D. \& Zhao, C. (1999). Acta Cryst. C55, 1815-1817.

